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Abstract. The Ohmic conductance and current through two quantum dots in series is
investigated for the case of incoherent tunnelling. A generalized master equation is employed
to include the discrete nature of the energy levels. Regions of negative differential conductance
can occur in theI–V characteristics. Transport is dominated by matching energy levels, even
when they do not occur at the charge degeneracy points.

1. Introduction

Due to the improvement of lithographical techniques on a nanometre scale in recent years it
has become possible to study systems that were inaccessible to experimentation before. The
most easily controlled mesoscopic systems are defined in the two-dimensional electron gas
of a semiconductor. By the application of gate electrodes [1, 2] it is possible to confine the
electron gas effectively to produce quantum wires and dots. This allows charge quantization
to be observed in the form of the Coulomb blockade [3, 4]. Moreover, the importance of
size quantization has been shown by Reedet al who discerned discrete states in small
quantum dots [5].

The effect of the charge quantization has been studied both for a single dot [6] and for
a double dot [7, 8]. In both cases the level spectrum could be considered continuous. The
effect of level quantization on the Ohmic conductance through a single dot has been studied
in the limit of weak coupling to the reservoirs. Coherent [9] and incoherent methods [10]
lead to the same result in this limit. There is still a proliferation of on-going research in
this area [11].

Until recently, not much work had been done on the transport properties of a double dot
with discrete energy levels. However, some useful experiments were performed recently
by Van der Vaartet al [12] in which the lineshape of the resonance peaks was determined
in the coherent regime. Even though the remainder of this paper will focus attention
on the incoherent regime, the above experiment is relevant in that it provides a feasible
experimental set-up which allows inter-dot tunnelling between discrete levels to be observed
in a straightforward manner. The limit of completely incoherent tunnelling is studied, where
the phase-breaking rate is large and the tunnelling process is sequential. This justifies the
use of a semi-classical method like the master equation. It must be noted that the phase-
breaking time is still large compared to the time that it takes for an electron to traverse
the dot. This ensures that the energy levels are quantized, due to the coherence of the
wavefunctions inside the dot.
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2. The generalized master equation

When it is assumed that the tunnelling rates are small compared to the Coulomb energy
and the average level spacing, then use of the master equation is justified [13]. In order
to take account of the discrete nature of the energy levels in the dot, the master equation
method for dots with a continuous energy level spectrum [6] has to be generalized. The
tunnelling rates not only depend on the number of electrons in the dot, but also on their
configuration, i.e. how the electrons are distributed over the available energy levels. When
there is a high relaxation rate, the electrons will revert to their local equilibrium distribution
between tunnelling events. This is likely to be the case for small tunnelling barriers which
cause the electrons to spend a long time in the dot. Since this distribution will depend only
on the temperature, the state of the dot may yet again be described simply in terms of the
number of electrons present in the dot.

Let P(p, N) be the probability that the system is in a state which is characterized
by N electrons in the dot which are distributed over the energy levels according to a
configurationp. Define T

pp′
L1 (N) as the tunnelling rate coefficient corresponding to the

transition{p, N + 1} → {p′, N} effected by an electron tunnelling through the left barrier.
T

p′p
1L (N) refers to the rate that corresponds to the reverse process. The rates of tunnelling

through the barrier on the right are defined similarly. Finally, there are the relaxation rates
T

pp′
r (N) which account for the intra-dot transitions at a fixed electron occupationN . The

rate of change of the probability of occurrence of the state{p, N} is thus given by

d

dt
P (p, N) =

∑
�=L,R

∑
p′

[
T

p′p
�1 (N − 1)P (p′, N − 1) + T

p′p
1� (N)P (p′, N + 1)

]
−

∑
�=L,R

∑
p′

[
T

pp′
�1 (N) − T

pp′
1� (N − 1)

]
P(p, N)

+
∑
p′

[
T p′p

r (N)P (p′, N) − T pp′
r (N)P (p, N)

]
. (1)

If the system consists of several dots in series, then the above formalism needs to be
extended and it is necessary to define the rates of tunnelling between the dots. Define
T

pp′,qq ′
i,i±1 (Ni, Ni±1) as the tunnelling rate corresponding to the transition{p, Ni + 1} →

{p′, Ni} and{q, Ni±1} → {q ′, Ni±1 +1} where the subscripti labels the site of the dot. The
evolution of the multi-particle state occupation probabilities for a dot not neighboured by a
reservoir is given by

d

dt
P (p, Ni) =

∑
Ni±1

∑
p′,q,q ′

T
p′p,qq ′
i,i±1 (Ni, Ni±1)Pi(p

′, Ni + 1)Pi±1(q, Ni±1)

+
∑
Ni±1

∑
p′,q,q ′

T
qq ′,p′p
i±1,i (Ni±1, Ni − 1)Pi(p

′, Ni − 1)Pi±1(q, Ni±1 + 1)

−
∑
Ni±1

∑
p′,q,q ′

T
pp′,qq ′
i,i±1 (Ni − 1, Ni±1)Pi(p, Ni)Pi±1(q, Ni±1)

−
∑
Ni±1

∑
p′,q,q ′

T
qq ′,pp′
i±1,i (Ni±1, Ni)Pi(p, Ni)Pi±1(q, Ni±1 + 1)

+
∑
p′

[
T p′p

r (N)Pi(p
′, N) − T pp′

r (N)Pi(p, N)

]
. (2)
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For both the single- and the multiple-dot system the steady-state current can be written as

J = e
∑
p,p′

∑
N

[
T

pp′
L1 (N)P (p, N) − T

p′p
1L P (p′, N)

]
. (3)

When it is assumed that the relaxation rates are large compared to the tunnelling rates,
the number of electrons in the dots is the only significant variable, since knowledge of
this quantity allows one to deduce the probabilities of the various electronic configurations.
Hence the formalism is greatly simplified. However, the rates of tunnelling between states
with different occupation numbers have to be redefined to include the weighted sum over all
possible tunnelling paths. DefineTL1(N) andT1L(N) as the tunnelling rates for an electron
tunnelling into and out of the dot through the left barrier withN other electrons present in
the dot:

TL1(N) =
∑
p,p′

T
pp′
L1 (N)P (p|N) (4)

T1L(N) =
∑
p.p′

T
pp′

1L (N)P (p|N + 1) (5)

whereP(p|N) is the conditional probability that the system is in configurationp given
that there areN electrons in the dot. Since the master equation takes only single-electron
tunnelling events into consideration, the only contributions that need to be taken into account
are those wherep andp′ differ by the occupation of one energy level. Therefore the double
sum overp andp′ can be replaced by a single sum over the single-particle energy levelsk:

TL1(N) =
∑

k

T k
L1(N)[1 − P(k|N)] (6)

T1L(N) =
∑

k

T k
1L(N)P (k|N). (7)

HereP(k|N) is the conditional probability that levelk is occupied given that there areN
electrons in the dot. For inter-dot tunnelling events the rates are re-expressed in terms of a
sum over the tunnelling paths from all levelsk in dot i to all levelsl in dot i ± 1:

Ti,i±1(Ni, Ni±1) =
∑
k,l

T
k,l
i,i±1(Ni, Ni±1)Pi(k|Ni + 1)[1 − Pi±1(l|Ni±1)]. (8)

For the case of negligible energy level broadening the probabilityPi(k|Ni) of finding an
electron on levelk of dot i given Ni electrons can be determined from the Boltzmann
distribution:

Pi(k|Ni) = e−βεk(Ni−1) Z
k
i (Ni − 1)

Zi(Ni)
(9)

1 − Pi(k|Ni) = Zk
i (Ni)

Zi(Ni)
(10)

whereβ = 1/kBT andεk(Ni −1) is the energy required to add an electron at an energy level
k whenNi − 1 electrons are already present in the dot.Zi(Ni) is the partition function for
Ni electrons in doti, andZk

i (Ni) is the conditional partition function forNi electrons given
that levelk is unoccupied. When the conditional probabilities are substituted in equation
(8), one obtains

Ti,i±1(Ni, Ni±1) =
∑
k,l

e−βεk(Ni)Zk
i (Ni)Z

l
i±1(Ni±1)

Zi(Ni)Zi±1(Ni±1)
T

k,l
i,i±1(Ni, Ni±1). (11)
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Events in which there is tunnelling between dots will in general not preserve energy, since
it is unlikely that energy levels will line up. The high relaxation rate suggests that all
tunnelling events can be considered inelastic. Hence

T
l,k
i±1,i (Ni±1, Ni) = e−β[εl (Ni±1)−εk(Ni)]T

k,l
i,i±1(Ni, Ni±1). (12)

It follows from the two preceding equations that the tunnelling rates are inelastic in the
total free energy of the system. This is also true for tunnelling between dot and reservoir.
This implies that the following condition holds true at zero bias forN dots for all possible
occupation numbersNi :

TL1

(N−1∏
i=1

Ti,i+1

)
TNR = TRN

(N−1∏
i=1

Ti+1,i

)
T1L. (13)

3. The canonical distribution

One of the quantities that is needed to calculate the rates of tunnelling between dots of
specified occupation number is the probabilityP(k|N) that an energy levelk is occupied
given a total occupation ofN electrons. When no relaxation of the electrons in the dot is
allowed the occupation of the levels will be determined by the coupling to the reservoirs.
However, in the presence of thermalization the levels will be filled according to some
equilibrium distribution independent of the energies at which the electrons initially entered
the dot. In metals the energy levels are filled according to the Fermi–Dirac distribution
function. Naively one might expect this also to hold for discrete energy levels and this has
been assumed in various papers. Unfortunately, this is not generally the case. In metallic
systems the levels are very closely spaced, so the addition of an additional electron will
have no effect on the distribution, whereas this is not true for a discrete level spectrum. In
this section the correct distribution will be calculated for a dot with an infinite number of
equally spaced energy levels, containingN electrons. The calculation is done for energy
levels with negligible broadening (0 � kBT ).

Consider the partition functionZ(N) for a dot containingN electrons, with energy
levelsεk = ε0 + k1ε :

Z(N) =
∑
p{N}

e−β(n1ε1+n2ε2+...) (14)

where the sum is taken over all realizationsp{N} with N = ∑
k nk. Explicitly expand out

the contribution of the lowest energy level (eithern1 = 1 or n1 = 0):

Z(N) = e−βε1
∑

p{N−1}
e−β(n2ε2+n3ε3+...) +

∑
p{N}

e−β(n2ε2+n3ε3+...). (15)

When it is assumed that there are an infinite number of energy levels, the sum over the
occupation numbersnk (k > 1) can be transformed to the partition function over all levels
(including k = 1). On rewritingεk asεk−1 + 1ε and relabellingnk asnk−1, the following
recursion relation is obtained:

(1 − e−βN1ε )Z(N) = e−βε0e−βN1ε Z(N − 1). (16)

With the boundary condition given byZ(0) = 1, this is solved to give

Z(N) = e−βNε0

N∏
n=1

(
1

eβn1ε − 1

)
. (17)
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This expression for the partition function does not explicitly include the many-body
interaction. This is irrelevant in this context, since the number of electrons is kept
constant. However, when one wants to calculate the probability that the dot contains a
certain number of electrons, the Coulomb interaction obviously needs to be included. For
a simple model of the interaction where all pairs of electrons have an associated Coulomb
repulsionU , the full interactive partition function is obtained by multiplication with a factor
exp[−βN(N − 1)U/2].
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Figure 1. The distribution function for a dot with equally spaced energy levels.

Now it is possible to do a similar calculation to obtain an expression forZk(N), the
conditional partition function forN electrons given that levelk is unoccupied. However,
in contrast to the full partition function, this requires one to solve a recursion relation in
both parametersk andN . This can be avoided by using equations (9) and (10) to yield a
recursion relation for the conditional probabilityP(k|N) directly:

P(k|N) = e−βε0e−β1εk
Z(N − 1)

Z(N)

[
1 − P(k|N − 1)

]
. (18)

Since the full partition functions are known, this is easily solved to give

P(k|N) =
N∑

q=1

(−1)q−1
q∏

p=1

e−β1εk

(
eβ1ε(N+1−p) − 1

)
. (19)

In order to compare this with the Fermi–Dirac distribution function, one needs to consider
a very large number of electrons in the dot. The occupation probability will depend only
on the differencex = k − N − 1/2:

P∞(x) =
∞∑

q=1

(−1)q−1e−β1εq(x+q/2). (20)
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For computational reasons the above equation is rewritten as

P∞(x) = 2e(β1ε/2)(x2−1/4)



∞∑
q=0

e−2β1ε(q−x/2+1/4)2
sinh

[
β1ε(q − x/2 + 1/4)

]
x < 0

∞∑
q=0

e−2β1ε(q+x/2+3/4)2
sinh

[
β1ε(q + x/2 + 3/4)

]
x > 0.

(21)

The distribution function has been plotted in figure 1 for various values ofβ1ε . In the
metallic limit, when the level spacing is small compared to the temperature, the distribution
tends towards the Fermi–Dirac distribution function, as expected. When the temperature is
comparable to or smaller than the level spacing, the distribution deviates significantly. Its
limiting behaviour is well described by another Fermi–Dirac distribution function with an
effective temperature which is half the real temperature. A slightly more accurate result for
the occupation probability in the limitβ1ε � 1 is given by (note thatx 6= 0 by definition)

P∞(x) =


1

eβ1ε(x−1/2) + 1
x < 0

1

eβ1ε(x+1/2) + 1
x > 0.

(22)
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Figure 2. I–V characteristics for various level spacings (0L = 0R).

4. Tunnelling through a single dot

When the energy level broadening is negligible compared to the temperature, i.e. in the limit
of weak coupling to the reservoirs, the density of states in the dot can be adequately described
by a set of delta functions. The leads are assumed to be in thermal equilibrium, described
by the Fermi–Dirac distributionsfL andfR. To a first approximation, the electron–electron
interaction can satisfactorily be described using the charging model, where each pair of
electrons has an associated Coulomb repulsion ofU . Fermi’s golden rule gives the rates of
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tunnelling between the dot and the reservoirs for all energy levelsk:

T k
L1(N) = 0L

h̄
fL(εk + NU) (23)

T k
1L(N) = 0L

h̄
[1 − fL(εk + NU)] (24)

where0L = 2πρL|VL|2 is the strength of coupling to the left reservoir. The expressions for
the rates of tunnelling through the barrier on the right are similar. It is assumed that the
quantum dot can be approximated by a parabolic confining potential, so the single-particle
energy levels are equally spaced by an energy1ε . In figures 2 and 3 the current and its
associated differential conductance are plotted as functions of the applied bias for a range
of energy level spacings. In numerical calculations it is possible to take into account more
realistic energy level spectra, enabling a closer comparison to be made with experiment.
When it is taken into account that the total spin of the system can only change by 1/2
with each tunnelling event, it appears that negative differential conductance may occur in
specific regions [14, 15].

In general a dot with closely packed energy levels yields a higher current than a dot with
a sparse energy level spectrum, because of the higher number of current paths available.
When1ε � U the metallic regime is entered.

When the energy level spacing is not negligible, theI–V characteristics are typified
by two energy scales, the Coulomb repulsion energyU and the bare energy level spacing
1ε . As in the metallic regime, one expects theI–V characteristic to display a current step
whenever the maximum occupation of the dot increases by one. This happens with a period
U + 1ε , since an extra electron not only has to overcome the Coulomb barrier but also has
to tunnel to the next available energy level. In addition, there is also some fine structure
which has an associated period of1ε . This is caused by the fact that an extra current path
is created when the bias is increased by1ε .

When 0L � 0R the dot will be mostly maximally occupied and the most marked
current increases occur whenever the Coulomb blockade can be overcome. This means
that the periodU + 1ε is accentuated. In the opposite regime0L � 0R, the dominant
period is the level spacing. Under normal operating conditions0L ' 0R, the two periods
coexist (see figure 3). It is noted that at higher bias voltages the number of peaks in
the differential conductance increases, as new current paths become available at different
energies for different occupation numbers. Only when the ratioU/1ε is an integer do peaks
corresponding to different occupation numbers coincide.

The Ohmic conductance through a quantum dot (figure 4) differs from that through a
metallic dot in two significant ways. Firstly, the periodicity of the conductance peaks has
increased by the level spacing1ε . Secondly, the temperature dependence of the peaks
has changed its nature. An increase in temperature now not only leads to larger thermal
broadening, but also to a lowering of the peak amplitude which is inversely proportional
to the temperature. This is due to the fact that transport proceeds through a single energy
level. The temperature dependence is proportional to the derivative of the Fermi distribution
function in the reservoirs [16]. Therefore, at low temperatureskBT � U the Ohmic
conductance can be written as

G(µ) = e2

h̄

0L0R

0L + 0R

∑
N

1

4kBT cosh2((µ − µN)/2kBT )
(25)

where the successive charge degeneracy pointsµN are spaced by an energyU + 1ε . For
higher temperatures several levels should be taken into consideration, each of which is
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Figure 4. Ohmic conductance through a dot with discrete levels (1ε = 0.1U ).

weighted by a factor determined by the Boltzmann distribution [10]:

G(µ) = e2

h̄

0L0R

0L + 0R

∑
N

∑
i

1

kBT
Pi(N)f

(
εi + NU − µ

2kBT

)
(26)

wherePi(N) is the joint probability that the dot containsN electrons and that the single-
particle levelεi is empty. Note that the contributions from levels other than at positions
µN are too small to cause a peak in the conductance.

Apart from obtaining the theI–V characteristics and the Ohmic conductance, there is a
third useful experiment that can be carried out. This involves applying a constant bias across
the dot and studying the resultant current as a function of the gate potential. Typically the
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Figure 5. Current versus gate voltage at fixed bias (1ε = 0.1U ).

source–drain bias is chosen to be less than the charging energy which isolates the effects
of the energy separation of the zero-dimensional states of the dot. In figure 5 the current
has been calculated as a function of the gate voltage for a dot with a constant level spacing
1ε = 0.1U . The thermal energy is given bykBT = 0.01U . In accordance with some recent
experiments [17–19] a number of peaks and troughs can be observed in the current. All
peaks and troughs can be characterized by the number of levels available to an incoming
electron to tunnel onto, and the number of levels from which an electron can tunnel out
of the dot. For a Fermi level separation1µ of 0.15U between the reservoirs (see figure
5) these numbers are 1, 2 → 1, 1 → 2, 1. This explains why the total peak is split into
two subpeaks. For the second set of graphs with1µ = 0.27U the sequence of available
tunnelling levels is 1, 3 → 1, 2 → 2, 2 → 2, 1 → 3, 1. It is also clear that asymmetric
tunnelling barriers cause the current peaks to be asymmetric.

5. Tunnelling through two dots in series

When studying the current and conductance properties of two quantum dots connected in
series between the source and the drain, one obviously has to take into account the tunnelling
between the dots. Inter-dot transitions are qualitatively different from transitions between a
dot and a reservoir. The reservoir can be assumed to have a continuous density of states, so
electrons can always tunnel elastically into and out of the reservoir. Even though inelastic
tunnelling events would in principle be allowed, their contribution would be relatively small
compared to the elastic tunnelling rate. Therefore inelastic scattering only has a significant
effect on the transport through a single dot if the scattering takes place inside the dot,
i.e. relaxation.

As far as tunnelling between dots is concerned, it is clear that the elastic tunnelling rate
is significant only when the energy levels in the dots line up. This is obviously not generally
the case. Usually an electron would have to interact inelastically in order to tunnel to a
different energy level in the neighbouring dot. The energy difference would normally be
absorbed or provided by phonons.

As a theoretical model, one can consider the double-dot system to be coupled to a
phonon reservoir or a heat bath with a coupling strength|Vph|2. The energy spectrum
of the independent oscillators of the phonon reservoir is characterized by the density of
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phonon statesρph(E). Some work has been done to calculate the current through a double-
barrier resonant structure with some interaction between electrons and photons [20, 21, 22].
The coupling to the optical phonons creates transmission subbands which are observable
in the I–V characteristics. In this section, where inter-dot transmission is considered, the
interaction with acoustic phonons will be the dominant mechanism. The energy spectrum
for acoustic phonons is given by the Debye density of states:

ρph(E) = Cph

{
E2 E < kB2D

0 E > kB2D.
(27)

In a two-dimensional electron gas the Debye temperature2D is approximately in the range
2D ∼ 200–700 K [23]. This is of the order of a few tens of meV, which corresponds to
several times the Coulomb interaction energyU . This is typically larger than the voltage
drop across the device, so one can simply use the phonon density of states below the cut-off
energykB2D.

Phonons are bosons, so the Pauli principle does not apply and states can be multiply
occupied. The average occupation number of states at a given energy is given by the
Bose–Einstein distributionnB(E):

nB(E) = 2(E) − 2(−E)

eE/kBT − 1
(28)

where2(E) is the Heaviside step function andE (−E) is the energy provided (absorbed)
by the phonon bath. The Bose–Einstein distribution at positive and negative values ofE

differs by 1, which is indicative of the fact that a heat bath can always absorb energy.
Any plausible model for the rate of inelastic tunnelling between the dots should take

into account a Boltzmann factor, the density of states in the two dots and a term which
describes the hybridization between levels in adjacent dots. A simple model for the rate of
inelastic tunnellingT kl

12 between an energy levelεk in the first dot andεl in the second dot
is as follows:

T kl
12 = |Vph|2

h̄

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ ρk

1(ω)ρl
2(ω

′)
[∑

1,2

|φk(ω)φl(ω′)|2
]
ρph(ω

′ − ω)nB(ω′ − ω)

(29)

where ρk
1(ω) and ρl

2(ω
′) are the densities of states for the energy levels. Considering

the dots in isolation from the reservoirs, the eigenstates cannot be regarded as localized
in each of the dots, but the wavefunctions will leak slightly into the other dot by virtue
of the hopping potentialVM . This results in the overlap integrals|φk

1(ω)φl
1(ω

′)|2 and
|φk

2(ω)φl
2(ω

′)|2. Naively this can be interpreted as the probability that the inelastic process
can take place between the wavefunction components in the same dot. If a specific system is
studied, then it is required to investigate the energy dependence of the off-diagonal elements
of the Hamiltonian. However, here we are mostly concerned with generic features, so the
wavefunctions are calculated from a simple two-dimensional Hamiltonian with diagonal
elementsω andω′ and off-diagonal elements given by the constant hopping potentialVM .
By calculating its eigenvectors the overlap matrix can be determined:∑

1,2

|φk(ω)φl(ω′)|2 = 2V 2
M

(ω′ − ω)2 + 4V 2
M

. (30)

The above model is chosen for its relative simplicity, but it is expected to give results which
are at least qualitatively correct. In principle, it is also possible to use this method using a
more sophisticated model for the inter-dot tunnelling rate.
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The density of states in the dots is broadened mainly as a result of the inelastic scattering,
which is a prerequisite for the incoherent regime. To a first approximation the broadening
can be considered as a Lorentzian distribution [24] with a broadening0φ proportional to
the phase-breaking rate. Now equation (29) can be rewritten as a single integral over the
energy differenceE = ω′ − ω between the initial and final state:

T kl
12 = Aph

∫ ∞

−∞
dE

0φ/π

(E + εk − εl)2 + 02
φ

E2

E2 + 4V 2
M

nB(E) (31)

with Aph = 2V 2
M |Vph|2Cph/h̄.
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Figure 6. The energy dependence of the inter-dot transition rate: (a) ignoring level broadening;
(b) including broadening0φ = 5VM .

It must be stressed that the broadening of the energy levels should be much less than
the temperature. Otherwise it is not valid any longer to use the Boltzmann distribution to
calculate the occupation probabilities. This assumption is consistent with the calculation
of the reservoir–dot transition rate of section 4. Figure 6(a) shows the energy dependence
of the inter-dot tunnelling rate for the case where the energy levels are considered to be
δ-functions. However, it should still be taken into account that the level broadening is
large compared to the coupling between the dots, causing the peaks in the transition rate at
E = ±2VM to be smeared. At energy differences1 = εl − εk which are small compared
to the broadening, the transition rate can now be approximated by a Lorentzian of width
20φ/h̄ and height 2Aph ln[0φ/2VM ]/π0φ (see figure 6(b)). At larger energy differences
|1| > 0 the function is sufficiently close to the Bose–Einstein distribution.

As the broadening is much smaller than the thermal energy, the inter-dot transition rate
for small 1 can get much larger than the rate of transition between the dot and reservoir,
so the inter-dot transition is no longer the current-limiting process. In this case it is of
no relevance whether the transition rate between the dots is infinite or simply very large.
This suggests that the inter-dot transition rate may be approximated by the Bose–Einstein
distributionAphnB(1) at all values of1. This makes the mathematical analysis much more
transparent.

When one calculates the rate of transition between dots with a given occupation number,
one should sum over all possible tunnelling events according to equation (8). The greatest
contribution should come from the energy range where the electron can tunnel from levels
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which are mostly occupied to levels which are mostly empty. Outside this window the
product P1(k|N1 + 1)[1 − P2(l|N2)] falls off exponentially. However, since the Bose–
Einstein distribution diverges at1 → 0, the total transition rate seems to be dominated by
matching levels, even when they are situated at energies far removed from the Fermi level.
This is clearly an unphysical situation. This anomaly can be removed by again including
the broadening in the calculation of the transition rate. Alternatively, it can be argued that
the transition rate for a given pair of levels is the combination of the previously defined
rate and the rate at which electrons can get into an excited level. This second rate is the
relaxation rate ¯h/τrel. Remembering that the inverses of the rates of consecutive processes
add together, the total inter-dot rate can be obtained for given occupation numbers:

T12(N1, N2) =
∑
k,l

Pi(k|Ni + 1)[1 − Pi±1(l|Ni±1)]
T kl

12h̄/τrel

T kl
12 + h̄/τrel

. (32)

In order to perform some realistic simulations it is helpful to know the dependence on the
size of both the charging energyU and the confinement energy1ε . In the charging model
approximation the Coulomb repulsion is inversely proportional to the capacitanceC of the
dot. This implies that the repulsion energyU is also inversely proportional to the area of
the dot. The single-particle energy level spacing is given by [25]

1ε = πh̄2

m∗area
(33)

wherem∗ is the effective mass of an electron in the two-dimensional electron gas in which
the quantum dot has been defined. It follows that both the Coulomb energy and the level
spacing scale inversely proportionally to the area of the quantum dot.
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Figure 7. Ohmic conductance through a double dot withAphh̄/0 = 1 (U1 = 0.41U , U2 = U ,
1ε1 = 0.13U , 1ε2 = 0.32U ). The empty and filled circles indicate the positions at which the
average occupation increases by one for dot 1 and dot 2 respectively.
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Figure 8. The temperature at which a conductance peak reaches its maximum.

5.1. Ohmic conductance

Figure 7 shows the Ohmic conductance through two dots with a relatively strong inelastic
tunnelling coefficientAph. In order to analyse the structure of the peaks, assume that the
total occupancy of each dot can only fluctuate by one electron. Moreover, assume that
only a single level per dot (at the charge degeneracy points) contributes substantially to the
transport. Then the global master equation is used to obtain an expression for the Ohmic
conductance:

G = e2Aph0L0R(0L + 0R)

4kBT cosh

(
(µ − εk)/2kBT

)
cosh

(
(µ − εl)/2kBT

)

×
[
Aphh̄

(02
L cosh

(
(µ − εl)/2kBT

)
cosh

(
(µ − εk)/2kBT

) +
02

R cosh

(
(µ − εk)/2kBT

)
cosh

(
(µ − εl)/2kBT

) )

+ 2Aphh̄0L0R cosh

(
εk − εl

2kBT

)
+ 20L0R(0L + 0R) sinh

( |εk − εl|
2kBT

)]−1

.

(34)

When the two reservoirs are equally strongly coupled to the dots, i.e.0L = 0R = 0, the
above expression peaks atµ = (εk + εl)/2. The peak conductance is given by (using
1 = εl − εk)

Gmax = e2Aph0

8kBT cosh3
(

1/4kBT

)[
Aphh̄ cosh

(
1/4kBT

)
+ 20 sinh

(
|1|/4kBT

)] . (35)

When the peak height is investigated as a function of the temperature, it appears that it
has a maximum at a value ofkBT /|1| which is given by the solution of the following
transcendental equation:(

2
Aphh̄

0

|1|
kBT

+ 3
|1|
kBT

− 4

)
tanh

( |1|
4kBT

)
= 2

Aph

0
− |1|

kBT
. (36)
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The solution is plotted in figure 8. When the ratio of the inelastic tunnelling coefficient
to the reservoir couplingAphh̄/0 is of order unity or larger, the temperature at which
a particular conductance peak reaches its maximum height is given by roughly half the
energy difference|1|. This maximum height becomes larger as the energy difference1 gets
smaller. This calculation is in good quantitative agreement with the temperature dependence
of the conductance curves of figure 7. At higher temperatures the calculation becomes more
inaccurate as several levels and more occupation numbers will start to contribute to the
transport.
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Figure 9. Ohmic conductance through a double dot withAphh̄/0 = 0.01 (U1 = 0.41U ,
U2 = U , 1ε1 = 0.13U , 1ε2 = 0.32U ). The empty and filled circles indicate the positions at
which the average occupation increases by one for dot 1 and dot 2 respectively.

In figure 9 the conductance is shown for a double-dot system which is identical to
that of figure 7 with the exception that the inelastic tunnelling coefficient is two orders
of magnitude smaller. From figure 8 one would expect the peaks to be maximized at a
temperaturekBT ' 2.2|1|. The above description of the conductance peaks seems to apply
to most of the peaks. However, it is clear that the peak which is situated atµ ' −4.7U

has an anomalous behaviour. The conductance at this point is much larger than expected.
This is due to the fact that one of the lower levels in the first dot very nearly matches up
with the dominant level in the second dot, thus strongly enhancing the inter-dot tunnelling
rate.

This effect shows up most strongly when the inelastic tunnelling coefficientAphh̄ is small
compared to the coupling0 to the reservoirs. This is simply due to the fact that the inter-
dot tunnelling is the main current-limiting process and will therefore tend to dominate the
physics. For large inelastic tunnelling coefficients the current will mainly be determined by
the matching of the levels between dot and reservoir. This explains why the aforementioned
effect is almost imperceptible in figure 7.

5.2. Current characteristics

The current–voltage characteristics have been calculated and are shown in figure 10 for
a double-dot system with specifications as indicated in the caption. Figure 11 shows the
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Figure 10. I–V characteristics for a double dot at various temperatures (U1 = 0.41U , U2 = U ,
1ε1 = 0.13U , 1ε2 = 0.32U , Aphh̄/0 = 0.01).
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Figure 11. I–V characteristics for a double dot at various temperatures (the dots are interchanged
with respect to the previous figure).

results for a system where the dot specifications have been swapped. Physically this simply
amounts to varying the chemical potential in the reservoir on the right instead of the left
reservoir.

At low temperatures two periods may be observed in theI–V characteristics. The larger
period is given by the Coulomb repulsion in the first dot plus a single-particle spacing
U1 + 1ε1. The smaller period is simply given by the single-particle spacing1ε1. This
behaviour is reminiscent of that of the current through a single dot with0L � 0R (see
section 4). In other words, the second dot with its surrounding barriers acts as a single
barrier with a reduced transparency. The electrons which have entered the first dot will
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tunnel into a lower energy level in the second dot at a rate of approximatelyAph since the
levels in the dots will not normally line up. At larger temperatures the current curves will
lose some features due to thermal smearing. This is clearly the case in figure 11.

However, the current curve of figure 10 has a more complicated form at high
temperatures. It has a region of negative differential conductance which occurs in the
bias range where the average occupancy of the first dot increases from one to two electrons
with respect to the average occupation number at zero bias. This can be explained by
considering the (unlikely) case where a pair of energy levels matches up for a given set
of occupation numbers. This will result in a highly increased rate of tunnelling between
the dots. When the bias across the device is raised the average occupancy of the dot will
increase. This means that the dots are less likely to contain the number of electrons for
which the levels lined up. Consequently the rate of tunnelling between the dots and hence
the overall current will decrease, in spite of the fact that the total number of tunnelling paths
is likely to have increased.

The temperature at which negative differential conductance can occur (if at all) is set
by the energy difference of the matching pair of levels in the dots. Their energy separation
has to be significantly less thankBT for the tunnelling rate to increase dramatically. A
higher temperature can cause some levels to match up which could not really be considered
energetically close at lower temperatures. However, a higher temperature also means that
there is a smaller probability that the total inter-dot tunnelling is dominated by just a single
pair of levels. This will reduce the effect. The conclusion is that negative differential
conductance is more likely to occur at higher temperatures, but when it occurs at a lower
temperature the effect will be more pronounced.
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Figure 12. The energy diagram for tunnelling through two dots at fixed bias.

Similarly to the one-dot case, one can extract information about the level spacing when
one considers the current through the system at fixed bias1µ while varying the gate
voltage of one of the dots, a measurement first performed by van der Vaartet al [12]. This
is depicted in figure 12. The Coulomb repulsion energies and the level spacings are the
same as before. The inelastic tunnelling coefficient is small compared to the dot–reservoir
coupling. The empty levels are the levels that an excess electron can occupy. Note that
no more than a single extra electron can be contained in the dot, since this is prevented by
the Coulomb blockade. Since electrons carry a negative charge, a rise in the gate potential
causes a downward shift of the energy levels.

The results are shown in figure 13 for a range of values of1µ. A few generic features
can be noted which are also true for tunnelling through a single dot. Firstly, the current is
periodic in the gate voltage with a periodU1 + 1ε1. Only a single period is shown in the
figure. Secondly, a significant current is only allowed to flow when the Coulomb blockade
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Figure 13. Current versus gate voltage fot the first dot at fixed bias (U1 = 0.41U , U2 = U ,
1ε1 = 0.13U , 1ε2 = 0.32U , kBT = 0.02U , 0L = 0R = 0, Aphh̄/0 = 0.01).

is overcome in both dots. This requires the lowest available level in each dot to lie within
the energy window1µ. This is clearly shown in figure 13 where a larger bias voltage
allows the current to flow at more values of the gate potential.

The most striking feature of figure 13 is the occurrence of sharp current peaks. These
happen at values of the gate voltage where one of the occupied states of the first dot
(containing the excess electron) lines up with an empty level in the second dot. It is clear
that this will happen with a periodicity1ε1 (in the figure1ε1 = 0.13U ). When the bias
voltage is such that several levels in the second dot are contained within the energy window
1µ, peaks will also occur at intervals1ε2. This is the case in the third graph of figure 13,
where1ε2 = 0.32U .

Finally, note that the current in the valleys between the peaks increases more or less
linearly with the number of peaks. This reflects the fact that at a higher gate potential there
are more electrons in the first dot which are able to tunnel downwards in energy into the
second dot. Each tunnelling path has an associated off-resonance tunnelling rate ofAph

which will contribute an amountAphh̄I0/0 towards the total current (assumingAphh̄ � 0).
Therefore the current minima should increase by this amount every time the gate potential
is increased by an amount1ε1.

This seems to be a much more powerful method for determining the single-particle level
spacing than the analogous experiment with a single dot. In the model used in this section,
the lineshape will be a multiple of the Bose–Einstein distribution. However, at very small
energy separations1, the intrinsic width of the levels becomes significant and the lineshape
will be approximately a Lorentzian of width 20φ near resonance, but will be asymmetric
off-resonance. This seems to correspond at least qualitatively to recent experiment [12]. In
the case of largeAphh̄/0, the middle barrier is no longer the current-limiting barrier, and
the current will not peak any longer but will simply increase with1 until a saturation value
of 2

3e2/h̄ is reached. Further experiments will have to show whether it is justified to assume
that the inelastic tunnelling rate can be approximated by the Bose–Einstein distribution. If
this turns out to be a false assumption, then the master equation can still be used to model
the effect of a more realistic inelastic tunnelling rate.
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6. Conclusions

For a dot with discrete levels, the distribution function at equilibrium differs from the Fermi–
Dirac distribution, especially at low temperatures. The peaks in the Ohmic conductance are
spaced by an amountU + 1e. In the I–V characteristics the effect of both the charge
quantization and the size quantization can be observed.

The transport through a double dot has been investigated assuming that inelastic transport
through the inter-dot barrier can take place by means of interaction with acoustic phonons.
The main peaks in the Ohmic conductance reach a maximum at a temperaturekBT which
is at least roughly half the energy difference1 between the dominant levels in the two
dots. Other levels in the two dots that are well aligned can also have a significant effect on
the conductance, especially when the inter-dot coupling is weak. TheI–V characteristics
may contain regions of negative differential conductance. This is less likely to occur at low
temperatures, although its effect will be stronger than at higher temperatures.

The inter-dot spacing can be analysed spectroscopically by investigating the current
through the double dot at fixed bias as a function of one of the gate voltages. This produces
very narrow peaks with a width that is closely related to the intrinsic level width. This
method eliminates thermal smearing of the peaks.
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